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A B S T R A C T

Species distribution models (SDMs) have traditionally focused on occupancy despite abundance potentially being 
a more useful metric for informing conservation initiatives. Integrating multiple species abundance datasets could 
retain the strengths of each data type and, at least partially, offset their weaknesses, potentially improving the 
performance of abundance-based SDMs. We developed spatially-non-stationary, abundance-based SDMs to assess 
the environmental drivers of spatial variation in abundance and to predict the abundance and distribution of 
northern bobwhite (Colinus virginianus) across the United States. We fitted Bayesian SDMs with regionally- 
partitioned coefficients by integrating structured North American Breeding Bird Survey (BBS) and semi- 
structured eBird count data. We found that bobwhite abundance was concentrated in three main regions: 
southern Texas, the Great/Midwestern Plains, and the southeastern coastal plain. Total abundance across the 
range was estimated at 8,577,291 (8,292,554 - 8,933,202). While the spatial extent of the predicted bobwhite 
range was generally similar across models, models fit with single data sources appeared to vastly underestimate 
(eBird) or overestimate (BBS) abundance, though abundance estimation was improved through data integration. 
Most covariate effects exhibited non-stationarity across the range, potentially leading to inappropriate inferences 
or management decisions from a spatially-stationary model. Our study provides an important example of how 
datasets collected at different spatial scales under different observation protocols can be integrated via SDMs to 
improve abundance-based modeling and correct for weaknesses of individual datasets. Our modeling framework 
provides regional estimates of the drivers of bobwhite abundance and range-wide estimates of abundance for 
guiding both local and range-wide bobwhite conservation.

1. Introduction

Land-use change is one of the most significant factors behind 
declining biodiversity, primarily via habitat loss and habitat fragmen
tation (Semper-Pascual et al., 2021). When habitat is lost, landscapes 
become more fragmented, containing smaller and more isolated patches 
separated by a matrix of human-altered land cover (Haddad et al., 
2015). Understanding how species will respond to dynamic landscapes 
is one of the current key challenges in ecology and biodiversity con
servation (Piirainen et al., 2023). Species distribution models (SDMs) 
are one of the most important tools currently available to assess the 

potential impacts of land-use change on spatial variation in the abun
dance and occupancy of species (Franklin, 2023). These models are 
widely used for modeling and forecasting species’ spatial distributions in 
response to global landscape and climate change (Renner et al., 2019). 
SDMs can, therefore, help to identify conservation needs, define alter
native conservation actions, evaluate the effects of such actions, and 
prioritize biodiversity conservation efforts.

Due to the widespread availability of presence and presence/absence 
data, SDMs are frequently used to relate occupancy to environmental 
characteristics for predicting species distributions (Hill et al., 2017; 
Jiménez-Valverde et al., 2021). Despite the utility of occurrence-based 
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SDMs, predicting spatiotemporal variation in abundance may be a more 
useful metric for assessing population status and risks. Abundance can 
vary greatly over space and time with only minimal changes in occu
pancy, such that occupancy analyses may underestimate rates of popu
lation change or range shifts (Ashcroft et al., 2017; Maxwell et al., 2019; 
Strebel et al., 2022). Furthermore, management and conservation ac
tions are frequently based on estimates of abundance rather than oc
cupancy, such as identifying priority conservation areas and assessing 
local extinction risk (Johnston et al., 2015; Waldock et al., 2022). Pre
dicted habitat suitability from occupancy-based SDMs is often poorly 
correlated with abundance and is more reflective of maximum possible 
abundance in an area (Dallas and Hastings, 2018; Jiménez-Valverde 
et al., 2021; VanDerWal et al., 2009), necessitating direct modeling of 
abundance with SDMs.

Several factors have historically impeded abundance modeling with 
SDMs. In contrast to occupancy datasets, broad-scale abundance data 
are lacking for many species. Abundance is also a more complex process 
than occupancy but contains more information about state processes 
and extinction risk. Local abundance may be affected by non- 
equilibrium dynamics or biotic conditions, such as competition or pre
dation, thereby weaking the link between abundance and the environ
mental or climatic gradients used for prediction (Laundré et al., 2014; 
Levine and Rees, 2002; Pulliam, 2000; Rodenhouse et al., 1997). Studies 
have found conflicting results on the effectiveness of modeling abun
dance with SDMs. Some have successfully developed abundance-based 
SDMs for a variety of species (e.g., Potts and Elith, 2006; Schindler 
et al., 2022; Strebel et al., 2022) while others have found generally poor 
predictive performance (e.g., Johnston et al., 2013; Waldock et al., 
2022). These varying conclusions may be attributable to differences in 
study systems, statistical algorithms employed (e.g., generalized linear 
models vs. machine-learning methods), model formulation (e.g., pre
dictor variables, accounting for imperfect detection), or the quality and 
types of abundance data available for inclusion in the models.

Data integration is a promising avenue for alleviating some of the 
issues associated with abundance-based SDMs and improving model 
performance. While structured abundance surveys are often geograph
ically restricted (Boersch-Supan and Robinson, 2021; Zipkin et al., 
2021), the rise of citizen-science initiatives means that broad-scale 
abundance data may be available for many species. These 
semi-structured citizen-science data are generally opportunistically 
collected and associated with numerous forms of bias (Jiménez et al., 
2019; Johnston et al., 2021); however, they are still potentially infor
mative concerning species abundance and the processes that drive dy
namics in space and time (Isaac et al., 2020). Data integration may 
therefore help to improve spatial coverage of abundance data and can, at 
least partially, compensate for weaknesses in individual datasets while 
retaining their strengths (Saunders et al., 2019). Integrating structured 
and semi-structured data can be performed in a Bayesian 
joint-likelihood framework (Miller et al., 2019), in which all datasets 
jointly estimate state parameters but each dataset is modeled as arising 
from a separate observation process. Performing data integration in such 
a manner allows for direct modeling of imperfect detection, which is 
often not incorporated into SDMs despite having the potential to sub
stantially bias results (Guillera-Arroita et al., 2015; Kéry et al., 2010). 
Integrating multiple datasets that vary in spatial coverage and data 
quality has been shown to improve precision, convergence rates, and 
predictive accuracy of SDMs (Hill et al., 2017; Koshkina et al., 2017; 
Miller et al., 2019), including for abundance-based SDMs (Strebel et al., 
2022).

SDMs have also frequently assumed a stationary (i.e., not varying 
spatially or temporally) relationship between environmental predictors 
and occupancy or abundance; however, species’ responses to the envi
ronment may vary across the range (Osborne et al., 2007; Thorson et al., 
2023). For example, populations near range edges are likely to be near 
the climatic tolerances of the of the species (Brown, 1984; Holt et al., 
2005) and so may be more sensitive to changes in climate compared to 

populations within the range core (Amburgey et al., 2018; MacArthur, 
1972). Similarly, widespread species may be locally-adapted to differing 
environmental conditions found throughout the range (Hällfors et al., 
2016; Valladares et al., 2014). Several methods have been developed for 
accounting for non-stationarity in environmental responses, such as 
geographically-weighted regression, spatially-varying coefficients, and 
regional portioning of data (Doser et al., 2024; Osborne et al., 2007). In 
cases when non-stationarity may be expected, such as when modeling 
range-wide abundance for a widespread species, stationary models can 
bias results and lead to incorrect inferences (Osborne and 
Suárez-Seoane, 2002; Thorson et al., 2023). Besides improving model 
performance, non-stationary SDMs can also infer spatial variation in the 
drivers of population states to better inform local management efforts 
(Doser et al., 2024).

Here, we develop an integrated, spatially-non-stationary SDM 
incorporating structured and semi-structured data to estimate the 
abundance of northern bobwhite (Colinus virginianus, hereafter, 
bobwhite) across their geographic range in the United States. Bobwhite 
are an ideal target for abundance-based species distribution modeling, 
as broad-scale abundance data are available from across the range via 
both structured breeding abundance surveys and citizen-science data
sets. Bobwhite detections during the breeding season primarily consist 
of males giving a distinctive “bob-white” call, so the effects of mis
identifications in the datasets should be relatively minimal. Long-term 
data from the North American Breeding Bird Survey (BBS) and Christ
mas Bird Count indicate a widespread decline of bobwhite populations 
across the range (Hernández et al., 2013; Sauer et al., 2020). Habitat loss 
and fragmentation are considered the primary causes of the range-wide 
decline in bobwhite populations (Brennan, 1991; Hernández et al., 
2013). The widespread downward population trajectories of this 
commercially-and-culturally-important species have led to the forma
tion of initiatives aimed at reversing population declines, such as the 
Northern Bobwhite, Grasslands, and Savannas Framework for Conser
vation Action implemented by the U.S. Department of Agriculture Nat
ural Resources Conservation Service’s (NRCS) Working Lands for 
Wildlife (WLFW) program (NRCS, 2022). This range-wide initiative re
quires accurate and fine-scale (i.e.., several km resolution) estimates of 
bobwhite abundance across the U.S. for prioritizing conservation ac
tions; however, previous spatial modeling of bobwhite distributions 
have focused either on regional scales (Duren et al., 2011; Roseberry and 
Sudkamp, 1998; Twedt et al., 2007) or coarse-scale predictions 
(Schindler et al., 2022). Furthermore, halting the current bobwhite 
decline requires identifying the environmental drivers of variation in 
bobwhite abundance. Bobwhite occur across a range of climate gradi
ents and habitat types, such as pine savannas in the southeastern U.S. 
and rangelands in Texas (Brennan et al., 2020). This variability neces
sitates a spatially-non-stationary SDM for modeling regional variation in 
environment-abundance relationships to better inform local bobwhite 
management efforts. The objectives of our study are twofold. First, we 
assess the utility of integrating structured and semi-structured data in an 
abundance-based SDM to predict bobwhite abundance across the range 
in the United States. Second, we use a hierarchical process incorporating 
regional partitioning of regression coefficients to assess the regional 
drivers of bobwhite abundance for informing management actions.

2. Methods

2.1. Model resolution and input data summarization

We selected 30 states across the eastern and southern U.S. for our 
analysis (Fig. 1). All states fell within the bobwhite range (Ziolkowski 
et al., 2022) and were therefore selected as the basis of the major con
centration of our datasets. We overlaid a grid of 5-km x 5-km cells across 
the whole of our study area to estimate grid-specific abundance. We 
removed from analysis any grid cells with missing covariate data (see 
below), leaving 182,455 grid cells across the U.S.
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2.2. Dataset selection and processing

2.2.1. Structured dataset
We used BBS data as our structured dataset (Ziolkowski et al., 2024). 

As part of BBS, volunteer observers with previous experience identifying 
birds by sight and sound perform roadside sampling routes each year 
from May – early July to survey bird abundance. Routes are ~40 km 
long with 50 stops spaced ~0.8 km apart. Observers perform a 3 min, 
400 m radius point count at each stop, recording all species seen or 
heard. BBS route establishment was performed based on a stratified 
random design, with approximately 3000 routes surveyed annually in 
North America (Ziolkowski et al., 2022). For our analysis, we used data 
from the years 2018, 2019, and 2021 (data from 2020 were missing due 
to public health restrictions imposed on field collection during the 
COVID-19 Pandemic). The raw data consist of surveys across all 50 
stops/route and the geographic location of the start of each route. We 
used a shapefile of BBS route paths, generated stops at 0.8 km intervals 
from the starting point along each route path, and associated these 50 
stops with their corresponding survey data (for further details, see Ap
pendix A). Each stop was assigned to a 5 km x 5 km grid cell based on its 
geographic location. Each survey was also associated with two cova
riates affecting detection probability: the number of passing cars and the 
presence or absence of excessive background noise (excluding car noise) 
during the survey duration. No more than 18 stops were surveyed per 
grid cell in each calendar year.

2.2.2. Semi-structured dataset
We used eBird as our semi-structured dataset (Sullivan et al., 2009). 

eBird, administered by the Cornell Lab of Ornithology, maintains a 
citizen-science database wherein users can submit checklists detailing 
the number of individuals of each species they observe. eBird represents 
a massive dataset on bird abundance, with over 1 billion bird observa
tions from across the world (www.ebird.org); however, the opportu
nistic nature of data collection means that eBird data is generally of 

lower quality than BBS (Pacifici et al., 2017). eBird employs many 
quality-control filters, such as removing unrealistically high bird counts 
or observations of species in places and times of year in which they are 
unlikely to occur, but observers vary widely in experience and identi
fication skills (Sullivan et al., 2009). Each checklist is associated with 
geographic coordinates and information about survey type (e.g., inci
dental observations, stationary count, travelling count, etc.) and effort 
(duration and distance traveled, if applicable); however, unlike BBS, the 
exact survey area of eBird checklists is often not known precisely. 
Furthermore, the semi-structured nature means that the spatial and 
temporal coverage of eBird is dependent on where and when observers 
submit checklists. eBird is thus spatially biased towards cities and 
easily-accessible areas (Johnston et al., 2021; Sullivan et al., 2009).

We performed a series of data processing steps to reduce the influ
ence of potential biases in the eBird dataset. Data were first filtered to 
only include complete checklists, i.e., only those surveys in which the 
observer recorded all species detected. We also filtered data based on 
observer effort to only include checklists < 5 h in duration, < 5 km in 
distance traveled, and checklists with < 10 observers (Schindler et al., 
2022). We then subset to only checklists that occurred during May and 
June of 2018, 2019, and 2021 to align with the years and periods of BBS 
data collection. Finally, we used the geographic coordinates reported by 
each checklist to assign it to its corresponding 5 km x 5 km grid cell. We 
then randomly selected up to 50 checklists per grid cell for each calendar 
year to reduce the effects of spatial autocorrelation in the eBird dataset 
(Johnston et al., 2021). For each checklist in this final pre-processed 
dataset, we also retained survey information, including the duration 
(in minutes), distance traveled (in km), and checklist type (stationary or 
traveling).

2.3. Environmental covariates

We used a suite of covariates to model the impacts of environmental 
variation and land use on spatial variation in abundance of bobwhite 

Fig. 1. Map showing the study region (colored) used to estimate the abundance and distribution of northern bobwhite (Colinus virginianus) across the eastern United 
States. Colored regions show USDA Land Resource Regions: D (Western Range and Irrigated Region), E (Rocky Mountain Range and Forest Region), F (Northern 
Great Plains Spring Wheat Region), G (Western Great Plains Range and Irrigated Region), H (Central Great Plains Winter Wheat and Range Region), I (Southwest 
Plateaus and Plains Range and Cotton Region), J (Southwestern Prairies Cotton and Forage Region), K (Northern Lake States Forest and Forage Region), L (Lake 
States Fruit, Truck Crop, and Dairy Region), M (Central Feed Grains and Livestock Region), N (East and Central Farming and Forest Region), O (Mississippi Delta 
Cotton and Feed Grains Region), P (South Atlantic and Gulf Slope Cash Crops, Forest, and Livestock Region), R (Northeastern Forage and Forest Region), S (Northern 
Atlantic Slope Diversified Farming Region), T (Atlantic and Gulf Coast Lowland Forest and Crop Region), and U (Florida Subtropical Fruit, Truck Crop, and 
Range Region).
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(Table B.1). These covariates were thematically grouped into three 
categories: climate, land cover and structure, and land use and distur
bance. Covariate layers were processed using a combination of the 
Google Earth Engine Python API (Gorelick et al., 2017) and R (R Core 
Team, 2020). As abundance data were summarized at the level of the 5 
km x 5 km grid cell, all environmental covariates were smoothed at 5 
km. All the covariate values at the center of each 5 km x 5 km grid cell 
were used to model grid cell-level bobwhite abundance estimates. No 
environmental variables were correlated (|r| < 0.6) across the range and 
all were standardized prior to analysis.

2.3.1. Climate
Climate variables included mean daily maximum temperature, mean 

daily precipitation, and the mean number of days with snow depth 
greater than 2.5 cm (hereafter, max temperature, precipitation, and 
snow days, respectively). The first two climate variables were derived 
from NASA’s Daymet v4 dataset (Thornton et al., 2020) spanning the 
years 2016 to 2021. We first calculated the pixel-wise mean climate 
values across all years and then smoothed surfaces by calculating the 
pixel-wise focal mean using a circular kernel with a 5-km radius. The 
snow days dataset was derived using the National Snow and Ice Data 
Center’s Snow Data Assimilation System (SNODAS) data product (Na
tional Operational Hydrologic Remote Sensing Center 2004; https://nsi 
dc.org/data/G02158/versions/1). For each year from 2016 to 2021, we 
downloaded daily snow-depth rasters and reclassified as 1 if the pixel 
had a recorded depth of 2.5 cm or greater and 0 otherwise. Then for each 
calendar year, we calculated the number of relevant snow days as the 
pixel-wise sum of all 365 daily rasters. Finally, we calculated the 
pixel-wise mean value across all years to derive a final covariate.

2.3.2. Land cover and structure
We included land cover variables that captured the mean propor

tional cover of broad vegetation classes hypothesized to affect bobwhite 
abundance. We calculated the percent cover (within a 5-km radius of 
each pixel) of lands classified as row crop, grassland, pasture, deciduous 
forest, evergreen forest, mixed forest, and water/wetland (hereafter, 
row crop, grassland, pasture, deciduous, evergreen, mixed, and water 
cover, respectively) based on the National Land Cover Dataset (NLCD) 
releases for 2016 and 2019. The percentage cover layers for each land 
use type were then averaged across the two years. We also used Ran
geland Analysis Platform (RAP) land cover datasets (Allred et al., 2021) 
spanning the years 2016 to 2021 to derive the proportional cover of 
shrubs and bare ground.

2.3.3. Land use and disturbance
We quantified mean human land use intensity using layers described 

in detail in Suraci et al. (2023) and based on a procedure originally 
developed by Theobald (2013). These layers integrate multiple datasets 
to estimate the intensity of disturbance at each location (i.e., raster 
pixel) across the landscape for three categories of human disturbance: 
urbanization, transportation, and energy development (hereafter, 
urban, transport, and energy intensity, respectively). Values for each 
disturbance type range between 0 and 1 and are based on underlying 
datasets quantifying human land use circa 2016.

Throughout the bobwhite range, and especially in ecosystems like 
pine savannas, fire has been used as a key management technique for 
improving bobwhite habitat due to its ability to suppress woody 
encroachment and stimulate the growth of important food plants 
(Greenfield et al., 2003; McGrath et al., 2017). However, excessive fire 
activity can lead to greater predation risks and habitat removal (Rosche 
et al., 2021). We estimated the frequency of fires between 2006 and 
2021 in each 5 km x 5 km grid cell using the Monitoring Trends in Burn 
Severity (MTBS) Burned Areas Boundaries Dataset (available at https:// 
www.mtbs.gov/direct-download). We then tabulated, for each 5 km x 5 
km grid cell, the total number of burn perimeters that it intersected, 
providing a coarse estimate of fire frequency.

2.4. Model description

We utilize a generalized linear model (GLM) framework for modeling 
bobwhite abundance, as this class of models has been successfully uti
lized to integrate multiple data sources for abundance-based SDMs 
(Schindler et al., 2022; Strebel et al., 2022). Waldock et al. (2022) found 
that simple GLMs (i.e., relating observations directly to the latent 
abundance state with a single data source likelihood) generally had 
lower predictive accuracy than machine-learning methods; however, 
data integration, hierarchical dependencies, non-stationarity, and 
imperfect detection are all straightforward to incorporate with GLMs 
(Doser et al., 2024; Kéry et al., 2010; Pacifici et al., 2017; Strebel et al., 
2022). Importantly, GLMs allow for estimation of easily interpretable 
regression coefficients for assessing species’ environmental responses 
and for informing management decisions.

2.4.1. State process
We used a hierarchical Bayesian framework to develop and fit a 

model jointly analyzing the BBS and eBird datasets through the inte
gration of a common state process but utilizing different observation 
processes for the different datasets. Both datasets jointly estimate the 
latent abundance state (Ni,t) representing bobwhite abundance in 5 km x 
5 km grid i in year t based on an intercept (b0), environmental covariate 
effects (βcov), and year effects (βyear). We accounted for non- 
stationarity in bobwhite responses to environmental gradients through 
hierarchical regional partitioning of b0, βcov, andβyear (Smith and 
Edwards, 2021). We modeled βcov and βyear as varying by USDA Land 
Resource Regions (LRR, Fig. 1). LRRs are subset into 4 – 64 USDA Major 
Land Resource Areas (MLRA) over the study area. In total, our study area 
was divided into 17 LRR and 159 MLRA. We allowed b0 to vary based on 
MLRA to accommodate finer-scale variation in abundance. Grid-level 
abundance was then modeled as: 

Ni,t ∼ Poisson
(

λi,t

)
(1) 

log
(

λi,t

)
= b0

[
MLRAi

]
+ βcov

[
LRRi

]
Xi + βyear

[
LRRi

]

t (2) 

where b0[MLRAi] represents the MLRA-specific intercept for grid i, 
βcov[LRRi] is a vector of LRR-specific covariate effects for grid i, Xi is a 
matrix of environmental covariates, and βyear[LRRi]t is the LRR-specific 
year effect for grid i in year t. We incorporated quadratic effects of fire 
frequency and the land cover and structure covariates to allow for non- 
linear effects on abundance (Table B.1). βyear was set to 0 for the first 
year of the study (2018). We modeled values of b0 for MLRA m as arising 
from a Normal process around a corresponding LRR-specific mean: 

b0m ∼ Normal
(
μ.b0LRR[LRRm

]
, σ.b0LRR[LRRm

])
(3) 

We then modeled values of μ.b0LRR for LRR l as arising from a Normal 
process with a global mean and standard deviation: 

μ.b0LRR
l ∼ Normal(μ.b0, σ.b0) (4) 

We modeled hierarchical effects on βcov and βyear in a similar 
manner as eq.4. We note that this modeling framework does not 
explicitly model spatial autocorrelation but will partially account for 
spatial autocorrelation through MLRA-specific intercepts and LRR- 
specific coefficients. We chose this model formulation to enable esti
mation of clearly-interpretable covariate effects within ecologically 
relevant geographic regions for informing local bobwhite management.

2.4.2. BBS detection process
Observers record all birds detected within a 400-m radius on BBS 

surveys, meaning that each BBS stop surveys only 2 % of the area of a 5 
km x 5 km grid. As we used covariates to model abundance at the grid- 
level, we assumed a common abundance across BBS stops within a grid 
and year. We therefore modeled abundance (NBBS

i,t ) at BBS stops in grid i 
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in year t as: 

NBBS
i,t ∼ Binomial

(
0.02,Ni,t

)
(5) 

We then modeled the number of bobwhite detected on BBS survey j 
in grid i in year t (yBBS

j,i,t ) as a realization of a Binomial process based on 
NBBS

i,t and the BBS detection probability (pBBS
j,i,t ). pBBS

j,i,t was modeled based on 
survey-level covariates of the presence or absence of extraneous back
ground noise (noisej,i,t) and number of passing cars (carj,i,t), such that the 
BBS likelihood was specified as: 

yBBS
j,i,t ∼ Binomial

(
pBBS

j,i,t ,N
BBS
i,t

)
(6) 

logit
(

pBBS
j,i,t

)
= b0BBS + b1BBSnoisej,i,t + b2BBScarj,i,t (7) 

2.4.3. eBird detection process
In contrast to BBS, the area surveyed on eBird checklists is often not 

known precisely. We therefore modeled observed bobwhite counts 
(yeBird

e,i,t ) on checklist e in grid i in year t directly as a function of grid-level 
abundance and the eBird detection probability (peBird

e,i,t ). peBird
e,i,t was 

modeled as a function of checklist type (a binary variable with typee,i,t =

0 for stationary checklists), duration (timee,i,t), and distance (diste,i,t). We 
only included the distance covariate as an interaction with checklist type 
because distance is only informative for traveling counts (i.e., will al
ways be 0 for stationary counts). 

yeBird
e,i,t ∼ Binomial

(
peBird

e,i,t ,Ni,t

)
(8) 

logit
(

peBird
e,i,t

)
= b0eBird + b1eBirdtypee,i,t + b2eBirdtimee,i,t + b3eBirddiste,i,t typee,i,t

(9) 

We standardized all continuous detection covariates prior to 
analysis.

2.5. Model implementation

We implemented SDMs in NIMBLE (de Valpine et al., 2017) via R v. 
4.1.1 (R Core Team, 2020). We drew posterior samples from three 
Markov chain Monte Carlo (MCMC) chains of 200,000 iterations, with 
burn-in phases of 40,000 iterations and thinning rates of 25. We eval
uated convergence through visual assessments of trace plots. The model 
took approximately 71 h when run in parallel with 3 cores on a 4th 
Generation AMD EPYC™ processor. Unless otherwise noted, we report 
medians and 95 % credible intervals of posterior samples in the Results. 
A summary of posterior samples is provided in Table C.1.

2.6. Validation

To assess the efficacy of data integration, we ran three versions of the 
model: (1) the fully integrated model, (2) an eBird-only model, and (3) a 
BBS-only model. We assessed out-of-sample prediction performance for 
each model as in Strebel et al. (2022) by randomly removing some grids 
from each dataset as validation datasets. We ensured adequate spatial 
coverage by randomly removing ~10 % of grids for each dataset in each 
LRR. In total, we used 1369 grids for BBS and 4565 grids for eBird as 
validation datasets. We fit the models on the training data (without the 
validation data, see Results) and used the posterior samples of b0, βcov, 
the average across years of βyear, and the cell-specific covariate values 
at each grid cell in the validation dataset to predict the expected 
abundance (λexp

i ) at each grid cell via Eq. (2). We then calculated the 
predicted counts on BBS validation surveys via eqs. 5 – 7 and the pre
dicted counts on eBird validation surveys via eqs. 8 – 9 using the 
respective survey-level detection covariates. We then calculated the root 
mean squared prediction error (RMSPE) between the observed and 

predicted counts. We also assessed the effect of the regional partitioning 
of regression coefficients by running a spatially-stationary model, i.e., 
replacing βcov[LRRi] with the global mean for the covariate effect 
(μ.βcov) in Eq. (2), which we refer to as the spatially-stationary inte
grated model. The spatially-stationary integrated model still incorpo
rated regional partitioning of the intercept and year effects, just not the 
covariate effects.

2.7. Predicting abundance across the range

We predicted λexp
i at each of the 182,455 cell across the study area for 

each of the four scenarios (integrated model, eBird-only model, BBS- 
only model, and spatially-stationary integrated model) as described in 
Section 2.6. Most detected birds in the BBS and eBird data are likely to 
be males, as both datasets were collected during the early breeding 
season when males are easily-detectable (i.e., calling to defend terri
tories and attract mates). We therefore assumed λexp

i to assess male 
bobwhite abundance in a given grid cell. We converted to density by 
multiplying λexp

i by 2 (assuming a 50/50 sex ratio) and dividing by the 
area of the grid cell (2500 ha). We set an upper limit on bobwhite 
abundance for all λexp

i predictions. We enforced this limit because pre
dictions would occasionally (<0.01 % of posterior predictions) predict 
unrealistically high abundance (e.g., millions or billions of birds in a grid 
cell) in preliminary analyses; these mainly occurred with positive 
quadratic covariate effects and grid cells with extreme covariate values. 
Bobwhite densities can reach 6.6 birds/ha in areas of high-quality 
habitat (Brennan et al., 2020), corresponding to a maximum possible 
male abundance of 8250 in a 5 km x 5 km grid cell (assuming a 50/50 
sex ratio). In a preliminary analysis without an upper limit, posterior 
samples of λexp

i at grid cells in the training data never exceeded 3000. 
Setting an upper limit on λexp

i is therefore likely to only affect predictions 
and not model estimation. Bobwhite form aggregations during the 
non-breeding season with minimum sizes of ~ 8 individuals (Brennan 
et al., 2020); therefore, we defined the bobwhite range as including grid 
cells with λexp

i ≥ 8 (0.0032 birds/ha). We provide a table of median 
predicted bobwhite density for each MLRA in Table D.1.

3. Results

Our final training dataset consisted of 136,610 eBird checklists and 
175,823 BBS surveys from 41,810 and 12,412 grid cells, respectively. 
These surveys generated 33,739 bobwhite detections in the eBird 
dataset and 16,752 detections in the BBS dataset. Analysis of trace plots 
suggested adequate convergence for detection, global mean intercept, 
and covariate parameters; however, model convergence was limited for 
a few of the MLRA-specific intercepts and LRR-specific covariate effects. 
Limited convergence seemed to occur most frequently in areas con
taining both very high and very low density (such as LRRs I and T) or for 
environmental covariates which exhibited limited variability in the LRR 
(such as snow days in the southern LRRs).

The map of predicted density revealed that the bobwhite range 
covers much of the eastern U.S., with the range extending to far-eastern 
New Mexico and Colorado along the western edge and through southern 
South Dakota, mid-Iowa, and northern Illinois, Indiana, and Ohio along 
the northern edge (Fig. 2). The predicted bobwhite range barely 
extended into Michigan and Pennsylvania, while no areas of Wisconsin 
were predicted to be viable for bobwhite (i.e., highest predicted abun
dance was only about 2 birds/grid cell, or 0.0008 birds/ha, in the state). 
Within the range, the SDM identified three major regions with high 
bobwhite abundance. The first region was in the southern tip of Texas 
(LRR I), which exhibited the highest predicted densities across the range 
(i.e., some grid cells reaching the maximum possible predicted density of 
6.6 birds/ha). The second region encompassed the Great and Midwest
ern Plains (LRRs H and M), extending from northern Texas north 
through Nebraska and east to Kentucky and Ohio. The last major region 
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was in the southeastern U.S. and primarily encompassed the Atlantic 
Coastal Plain (LRRs P, T, and U). Abundance in this region was centered 
in southern Georgia and northern Florida, with an additional area of 
high abundance in central Florida, and extended north along the coastal 
plain to Virginia. Median predicted densities in the second and third 
regions reached 0.19 and 0.29 birds/ha, respectively. Predicted density 
was low in the Appalachian region, the Mississippi Delta, the Florida 
Everglades, and the Blackland Prairie/Oak Woods and Prairies regions 
of Texas. Coefficients of variation of predicted density were generally 
inversely correlated with density estimates and were highest along the 
edges of the range in western Colorado and New Mexico, northern South 
Dakota, and the Upper Peninsula of Michigan (Fig. E.1).

Predicted abundances across grid cells for the integrated SDM were 
generally more highly correlated with predictions from the eBird-only 
SDM (r2: 0.66, 0.28 – 0.79) than the BBS-only SDM (r2: 0.49, 0.26 – 
0.61); however, uncertainty was high and the strength of correlations 
differed by LRR (Table F.1). Spatial predictions of bobwhite distribu
tions were relatively similar between the integrated model and single 
data source models, with each predicting a similar distribution of the 3 
major areas of bobwhite abundance. Despite this, predicted abundance 
values varied widely between the three models (Figs. 2, 3). In particular, 
predicted abundance values for the eBird-only model were far lower 
than for the integrated model. This led to a greatly diminished bobwhite 
range predicted from the eBird-only model compared to the integrated 
model (Fig. 3A), as many grid cells predicted to be occupied by the in
tegrated model were predicted to be below the 8 bird threshold by the 
eBird-only model. In contrast, the spatial extent of the BBS-only model 
was largely similar to the integrated model; however, abundance esti
mates from the BBS-only model were substantially higher, especially 
within the three main bobwhite regions (Fig. 3B). The BBS-only model 
also estimated higher bobwhite density in central Texas (between 
southern Texas and the start of the Great/Midwestern Plains region), 
northeastern Louisiana, and the edge of the range on the Nebraska/ 
South Dakota border. These relative differences in predicted local 
abundance led to substantial differences in estimates of total bobwhite 
abundance summed within the estimated range, with abundance esti
mates from the integrated model being between those of the eBird-only 
and BBS-only models. Total bobwhite abundance within the range was 
estimated at 8,577,291 (8,292,554–8,933,202) by the integrated model, 

179,327 (122,064–258,751) by the eBird-only model, and 16,417,536 
(15,626,753–17,510,721) by the BBS-only model. Out-of-sample pre
diction accuracy was similar between models for both the BBS (inte
grated RMSE: 0.48; BBS-only RMSE: 0.49) and eBird (integrated RMSE: 
0.90; eBird-only RMSE: 0.90) data likelihoods; however, precision of 
grid-level abundance estimates was higher for the integrated model than 
for the single data source models after accounting for regional variation 
in CV (Table G.1).

LRR-specific regional partitioning of regression coefficients revealed 
that bobwhite responses to many environmental covariates varied across 
the range (Figs. H.1 – H.16). For example, snow days had a negative 
effect on bobwhite abundance at the northern edge of the range (e.g., 
LRRs F, M, L, R) but not the southern edge (e.g., LRRs I, J, P, Fig. 4, 
Fig. H.3). Despite the regional variation, eight environmental covariates 
exhibited significant linear or quadratic effects on bobwhite abundance 
at the global level (Fig. 5, Table C.1). Globally, abundance was posi
tively linearly related to max temperature (1.38, 0.15 – 2.81) and row 
crop cover (0.45, 0.17 – 0.72) but negatively linearly related to snow 
days (-3.09, -5.43 – -0.90), deciduous cover (-0.34, -0.72 – -0.08), water 
cover (-0.16, -0.31–-0.03), and urban intensity (-0.44, -0.65 – -0.19). In 
particular, bobwhite abundance was predicted to be near zero when max 
temperatures were below 20 ◦C and the number of snow days were 
above 20 (Fig. 5). Grassland and shrub cover exhibited curvilinear re
lationships with abundance, having positive linear effects (grassland: 
0.50, 0.28 – 0.75; shrub: 0.70, 0.08 – 1.28) and negative quadratic ef
fects (grassland: -0.23, -0.47 – -0.07; shrub: -3.68, -6.72 – -1.24). 
Globally, bobwhite abundance peaked at ~ 30 % grassland cover; 
however, LRRs encompassing southern Texas and the Great/Midwestern 
Plains (H, I, M) exhibited straight linear or quadratic increases in 
abundance with grassland, while other LRRs peaked between 20 – 50 % 
grassland cover (Fig. 4, Fig. H.5). Similarly, abundance peaked at ~ 4 % 
shrub cover at the global level, but LRR-specific peaks ranged up to 30 % 
shrub cover (Fig. H.11).

Abundance predictions from the spatially-stationary integrated SDM 
were largely similar to predictions from the spatially-non-stationary 
integrated SDM, though the spatially-stationary integrated model 
generally predicted smoother range edges and higher densities in areas 
unlikely to be suitable for bobwhite, such as the Mississippi River Delta 
and the Everglades (Fig. I.1). Out-of-sample prediction accuracy of the 

Fig. 2. Model predictions of median density (birds/ha) of northern bobwhite (Colinus virginianus) across the eastern United States from a species distribution model 
integrating North American Breeding Bird Survey and eBird data. Warmer colors represent areas of higher predicted density. Model predictions were in the form of 
expected abundance/grid cell, which we assumed to be largely representative of male abundance and converted to bird density based on a 50/50 sex ratio and the 
area of grid cells (2500 ha). Grid cells with predicted abundance < 8 birds (0.0032 birds/ha) were considered to be unviable for bobwhite persistence.
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spatially-stationary model was comparable for the BBS (RMSE: 0.48) but 
slightly worse for the eBird (RMSE: 0.92) data likelihoods compared to 
the spatially-non-stationary integrated model. Despite the relative sim
ilarities, estimated covariate effects differed substantially between the 
spatially-stationary and spatially-non-stationary integrated models, 
such that patterns from one portion of the range often masked effects in 
other regions with the spatially-stationary integrated model (Table C.1, 
Table I.2). For example, the spatially-stationary integrated model esti
mated a negative effect of precipitation on bobwhite abundance; how
ever, this was mostly driven by eastern LRRs (N, P, T) while bobwhite in 
LRRs covering southern Texas and the Great/Midwestern Plains (H, I, M) 
were positively associated with rainfall (Fig. 4, Fig. H.2). Similarly, the 
spatially-stationary integrated model estimated a positive linear and 
negative quadratic effect of fire frequency on bobwhite density. This was 
mostly driven by effects in the southeastern U.S. (LRRs P, T) but masked 
a negative effect of fire frequency in southern Texas (LRR I, Fig. 4, 

Fig. H.16). In contrast, the spatially-non-stationary integrated model 
estimated non-significant global effects of precipitation and fire fre
quency on bobwhite abundance.

4. Discussion

We successfully developed an integrated SDM that jointly exploited 
the information contained in multiple, disparate datasets to predict 
density of bobwhite across the United States. Our prediction of the 
spatial extent of the bobwhite range is similar to previous estimates of 
bobwhite distributions (Schindler et al., 2022; Ziolkowski et al., 2022); 
however, our distribution map was generated at a much finer scale than 
previous studies. For example, our study estimated density in 5 km x 5 
km grid cells while Schindler et al. (2022) estimated density within 111 
km x 111 km grids. Our use of an abundance-based SDM showed that 
abundance was not constant across the range but was instead 

Fig. 3. Model predictions of median density (birds/ha) of northern bobwhite (Colinus virginianus) across the eastern United States from species distribution models fit 
using either only eBird data (A) or only North American Breeding Bird Survey data (B). Warmer colors represent areas of higher predicted density. Model predictions 
were in the form of expected abundance/grid cell, which we assumed to be largely representative of male abundance and converted to bird density based on a 50/50 
sex ratio and the area of grid cells (2500 ha). Grid cells with predicted abundance < 8 birds (0.0032 birds/ha) were considered be unviable for bobwhite persistence. 
Note that the density scale is the same as in Fig. 2.
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concentrated in three major regions, southern Texas, the Great and 
Midwestern Plains, and the coastal plain of the southeastern U.S. into 
central Florida, all of which have experienced bobwhite population 
declines over the past several decades (Hernández et al., 2013; Sauer 
et al., 2020). Conservation funding is often limited and cannot be 
implemented everywhere within the range; our results suggest that 
WLFW and other bobwhite initiatives aimed at reversing broad-scale 
bobwhite population declines should prioritize these three major re
gions for bobwhite conservation rather than lower-abundance regions 
(e.g., the Delmarva Peninsula or much of Mississippi, Louisiana, and 
northeastern Texas).

In biodiversity monitoring and ecology, multiple data sources are 
often available when examining the distribution of a species over a 
broad geographical area (Miller et al., 2019). Our SDM exploits the in
formation from structured BBS and semi-structured eBird datasets by 
jointly estimating the latent grid-level abundance and allowing a 

separate observation process for each data source. Abundance pre
dictions across the study area from the integrated model and the indi
vidual dataset models generally exhibited similar spatial patterns of 
occupancy (i.e., predicting the occurrence and distribution of the three 
main regions of bobwhite abundance). Out-of-sample predictive accu
racy was also similar across models. The vast majority of surveys in the 
validation dataset consisted of either 0 (eBird: 86 %; BBS: 94 %) or 1 
(eBird: 8 %; BBS: 4 %) bobwhite detections and so were largely assessing 
occupancy rather than abundance. Despite these similarities, the three 
models differed widely in absolute abundance estimates. While true 
abundance of bobwhite in the U.S. is not known exactly, the total 
range-wide abundance estimates from the eBird-only (0.17 million) and 
BBS-only (16 million) models are an order of magnitude lower and 
higher, respectively, than abundance estimates based on expert opinion 
from Partners in Flight (5.8 million, Rosenberg et al., 2016). eBird data 
had broad spatial coverage but appeared to underestimate density, 

Fig. 4. Predictions for the effect of select environmental covariates on density (males/2500 ha) of northern bobwhite (Colinus virginianus) across select USDA Land 
Resource Regions (LRR) from a spatially-non-stationary species distribution model integrating eBird and North American Breeding Bird Survey data. Selected 
environmental covariates include mean daily precipitation (mm, top row), mean number of days with snow depth greater than 2.5 cm (snow days, second row), 
percentage cover of grassland (third row), and the number of recorded fires over a 16-year period (fire frequency, bottom row). Selected LRRs are I (leftmost column), 
M (second column), N (third column), and P (rightmost column). See Fig. 1 for a description of LRRs. Predictions are shown across the general range of covariate 
values observed in each LRR over the study duration and were generated using LRR-specific intercepts and year effects. Lines represent median prediction estimates 
across posterior samples. Predictions generally exhibited high uncertainty, especially at the high end of the covariate range, so we denote 85 % credible intervals of 
the model predictions (shaded region) to better visualize median trends. LRR-specific covariate effects with significant positive or negative linear effects (95 % 
credible intervals do not overlap 0) are denoted with symbols “+” or “-”, respectively, while significant quadratic effects are denoted with double symbols. LRRs with 
a significant covariate effect on abundance are colored vermilion.
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Fig. 5. Predictions of global mean covariate effects on density (males/2500 ha) of northern bobwhite (Colinus virginianus) in the eastern United States from a species 
distribution model integrating eBird and North American Breeding Bird Survey data. Predictions are shown for the six global covariates that exhibited significant (95 
% credible intervals did not overlap 0) linear and/or quadratic effects on bobwhite density: mean daily maximum temperature (◦C, max temperature), mean number 
of days with snow depth greater than 2.5 cm (snow days), urbanization intensity, and percentage cover of row crops, grassland, deciduous forest, water/wetlands 
(water), and shrubs. Lines represent median prediction estimates across posterior samples. Predictions generally exhibited high uncertainty, especially at the high end 
of the covariate range, so we denote 85 % credible intervals of the model predictions (shaded region) to better visualize median trends. Predictions were generated 
using the global mean intercept (b0) and average of year effects (βyear).
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likely due to the uncertainty in defining the survey area such that 
checklist counts had to be directly related to abundance at the 5 km x 5 
km grid cell (Eq. (8)). Thus, counts on eBird surveys represent the 
minimum possible abundance/2500 ha, while counts from BBS surveys 
with known sampling area (400 m radius circle) represent the minimum 
possible abundance/50 ha. Checklist type, duration, and effort all had 
significant effects on detection probability (Table B.1); however, the 
eBird-only model appeared to still vastly overestimate detection prob
ability (integrated b0eBird: -4.23, -4.27 – -4.19; eBird-only b0eBird: -1.67, 
-1.71 – -1.63, corresponding to median baseline detection probabilities 
of 0.014 and 0.159, respectively) and hence vastly underestimate 
abundance. In contrast, BBS data are associated with a known survey 
area but had limited spatial extent. Despite using data from over 1500 
survey routes across the study area, BBS surveys were only conducted in 
25 % of grids in the training dataset (compared to 84 % for eBird). In 
particular, BBS had limited coverage in some MLRAs, such that some of 
the b0 were likely to have been little informed by data and instead 
informed mostly through the hierarchical nested structure of the model. 
These results suggest that SDMs with complex hierarchical modeling 
using a single data source could be more suitable for occupancy rather 
than abundance analyses unless individual datasets have adequate 
spatial coverage and can adequately assess detection probability.

In contrast to the single data source models, integrating both eBird 
and BBS data with a joint-likelihood model generated a range-wide 
abundance estimate (8.5 million) which was much more similar to the 
Partners in Flight estimate. Discrepancies between our estimate and the 
Partners in Flight estimate may be due to the latter being based on expert 
opinion rather than statistical models. Alternatively, we assumed that 
predicted abundance was largely reflective of male abundance, so we 
converted to total density via a 50/50 sex ratio. Some females were 
likely detected on BBS and, especially, eBird surveys, such that model 
predictions may have represented abundance of males and some per
centage of females. Multiplying this predicted abundance by 2 may 
therefore have led to overestimates of abundance. Regardless, data 
integration seemed to have greatly improved the accuracy of range- 
wide, and led to more precise LRR-specific, abundance estimates. In 
particular, the integrated model used the structured nature and defined 
study area of the BBS data to estimate the eBird detection process from 
grid cells in which both were present, and then combined this with the 
broader spatial extent of the eBird data to improve abundance estima
tion. Our work adds to a growing body of literature showing that inte
grating multiple datasets in an SDM framework can be a powerful tool 
for improving model performance (Fletcher et al., 2019; Isaac et al., 
2020; Koshkina et al., 2017; Pacifici et al., 2017). Our integrated model 
combined the relative strengths of each data set while, at least partially, 
correcting for the weaknesses responsible for the poor abundance esti
mation with the individual data source models. Thus, our results show 
that data integration can be a powerful tool for overcoming the chal
lenges associated with abundance-based SDMS (Strebel et al., 2022).

In addition to mapping predicted density across the eastern U.S., our 
work also shows the value of accounting for spatial-non-stationary in 
species’ responses to environmental gradients across the range. Pre
dicted bobwhite densities were largely similar between the spatially- 
stationary and spatially-non-stationary versions of the integrated SDM, 
suggesting that most of the spatial variation in abundance was explained 
by the MLRA-specific covariates rather than the regional partitioning of 
covariate regression coefficients. Despite this, inferences about the 
environmental drivers of bobwhite abundance differed greatly between 
the spatially-stationary and spatially-non-stationary models, with the 
spatially-stationary model masking many of the regional patterns 
observed with the spatially-non-stationary model. Regional differences 
in bobwhite responses were frequently observed with climate variables, 
including precipitation and snow days. Snow days negatively affected 
bobwhite abundance at the northern edge of the range but generally had 
little effect further south, likely reflecting northern birds living near 
their physiological and environmental tolerances (Brown, 1984; Holt 

et al., 2005). Periods of snow and cold temperatures can limit pop
ulations at the northern edge of the range through increasing energy 
demands, reducing food availability, and reducing overwinter survival 
(Janke et al., 2017; Wolske et al., 2023). Similarly, bobwhite density was 
positively associated with precipitation in southern Texas and the 
Great/Midwestern plains but was negatively related to abundance in 
much of the eastern U.S. Previous studies have also found positive effects 
of precipitation on bobwhite demography and abundance in the western 
portion of the range (Hernández et al., 2005; Lusk et al., 2001; Parent 
et al., 2016), attributable to the more arid climate. In contrast, the 
negative effect of precipitation on bobwhite abundance in the wetter 
southeastern U.S. may reflect adverse effects of extreme precipitation on 
recruitment and chick survival (Terhune et al., 2019). We incorporated 
climate variables as 6-year averages, though bobwhite populations may 
be more heavily affected by deviations rather than mean values (Lusk 
et al., 2001). Incorporating year-specific estimates of climatic variables 
rather than long-term averages could be implemented in future 
modeling efforts to potentially improve model performance.

Most land cover and land use covariates also exhibited regional 
variation in bobwhite responses, which could have led to incorrect in
ferences and management recommendations with a spatially-stationary 
model (Doser et al., 2024; Thorson et al., 2023). One example is the 
response of bobwhite to fire. Prescribed burns are frequently used to 
manage lands for bobwhite because they promote the growth of forbs 
and grasses used for food and cover, increase vegetative diversity, in
crease mobility, and reduce woody encroachment (Cram et al., 2002; 
Stoddard, 1931; Weber et al., 2022; Wellendorf and Palmer, 2009). The 
spatially-stationary integrated model estimated a curvilinear effect of 
fire frequency on bobwhite abundance. The spatially-non-stationary 
model, in contrast, revealed that this pattern was mostly driven by 
bobwhite responses in the southeastern U.S., where prescribed burns are 
frequently used to manage bobwhite within pine forests (Brennan et al., 
2020; Jones and Chamberlain, 2004; Nolan et al., 2024; Weber et al., 
2022). Assuming a spatially-stationary response to fire frequency 
masked a negative effect of fire in southern Texas. The more xeric 
conditions in this region cause vegetation to recover more slowly 
post-disturbance compared to in the southeastern U.S., such that 
frequent fires in southern Texas may prevent vegetation from recovering 
to a sufficient level to support bobwhite (Weber et al., 2022). Our results 
suggest that large-scale fires every ~ 8 – 10 years may be beneficial for 
bobwhite in the southeastern U.S. but are unlikely to promote bobwhite 
abundance in southern Texas. The optimal fire return interval of 8 – 10 
years in the southeastern U.S. was surprising, as previous studies have 
generally found optimal prescribed fire return intervals of ~2 years for 
promoting bobwhite habitat in this region (McGrath et al., 2017; Weber 
et al., 2022; Wellendorf and Palmer, 2009). The higher optimal fire 
return interval in the southeastern U.S. observed in our study, and the 
lack of global-level fire effects for the spatially-non-stationary integrated 
model, may be attributable to issues of scale. Our burn data came from 
MTBS, which maps the distribution of large-scale fires over 202 ha in the 
eastern U.S. The average size of prescribed burns is usually smaller, 
averaging 96.7 ha in the Great Plains states (Ahamad, 2022) and 10.7 
and 77.7 ha on private and public lands in the southeastern U.S., 
respectively (Cummins et al., 2023). Thus, our fire data did not 
adequately represent the distribution and frequency of small-scale pre
scribed burns specifically aimed at promoting bobwhite habitat and 
instead mostly represented wildfires. Incorporating spatial information 
on smaller-scale prescribed fires would likely improve inferences for 
future bobwhite modeling efforts.

Bobwhite populations also responded strongly to coverage of de
ciduous forest and grassland across the range. Bobwhite abundance was 
negatively related to deciduous forest cover, an effect which was rela
tively consistent across the LRRs spanning the three high-abundance 
regions (Fig. H.7). Bobwhite habitat requirements include an intermix
ing of grasses, herbaceous plants, and shrub cover (Brennan et al., 
2020); however, encroachment by deciduous hardwoods can shade out 
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the plant communities on which bobwhite rely (Peitz et al., 1997; Welch 
et al., 2004). Furthermore, forests and forest edges can harbor a higher 
abundance of bobwhite predators such as hawks (Seckinger et al., 2008; 
Thompson et al., 2014). Our results are consistent with previous 
bobwhite research showing that closed-canopy deciduous forests are 
unsuitable habitat for bobwhite (Ford et al., 2025; Howell et al., 2021; 
Lohr et al., 2011) and that hardwood management is likely to be broadly 
useful for promoting bobwhite habitat across the range (Palmer and 
Sisson, 2017; Ransom et al., 2008). The effect of grassland cover on 
bobwhite abundance was more complex. We found a global-level posi
tive linear effect of grassland cover across the range, which is unsur
prising given that bobwhite are frequently considered a grassland 
species and have been found to be positively associated with many other 
grassland bird species (Crosby et al., 2015; Riffell et al., 2008; Rose
nblatt et al., 2022). Grassland cover was positively related to abundance 
in south Texas and the Great/Midwestern Plains; however, grassland 
cover in the eastern and southeastern U.S. also exhibited a negative 
quadratic relationship with bobwhite abundance. Bobwhite abundance 
in this region peaked at ~ 20–30 % grassland cover, roughly corre
sponding to the optimal grassland cover for bobwhite along BBS routes 
reported by Roseberry and Sudkamp (1998). The decline in bobwhite 
abundance at higher grassland covers in this region could reflect 
bobwhite avoidance of large monocultures of exotic grasses such as 
fescue (Lolium arundinaceum). Our landcover data came from NLCD, 
which cannot discriminate between cover of native and non-native 
grasses (Olimb et al., 2018). Non-native grasses generally provide 
inadequate food and vertical structure, such that bobwhite often avoid 
non-native grass monocultures (Barnes et al., 1973; Hernández et al., 
2013; Sands et al., 2012). The predictive accuracy of our model and the 
estimated effects of grassland cover would likely be improved through 
separating the effects of coverage of native vs. non-native grasses on 
bobwhite abundance, though we are not aware of any maps of native 
grass coverage across the entire study area.

Data integration in ecology has become a widespread approach to 
improve predictive power of SDMs over the past several decades (Emmet 
et al., 2023; Isaac et al., 2020; Miller et al., 2019). Our study provides an 
important example showing how structured and semi-structured data 
collected at different spatial scales and under different observation 
protocols can be integrated via a joint-likelihood framework to improve 
abundance estimation and, at least partially, correct for the limitations 
of individual datasets for abundance modeling. Our approach provides a 
flexible modeling framework for incorporating detection probability 
and hierarchical regional-partitioning of regression coefficients into 
abundance-based SDMs. Future efforts could focus on refining covariate 
values used in the models, such as incorporating yearly climate values or 
including measures of landscape structure (e.g., interspersion or conta
gion; Guthery, 1997; Roseberry and Sudkamp, 1998). We anticipate that 
our results will be broadly useful for informing local management de
cisions and for prioritizing areas of conservation action across the range, 
as is being implemented with the NRCS Areawide Networks to Connect 
Habitat and Optimize Resiliency (ANCHOR) program (Costanzo et al., 
2025). Furthermore, regression coefficients from our model can be used 
to predict changes in the abundance and distribution of bobwhite based 
on future broad-scale conservation actions or climate change (Guisan 
et al., 2013; Porfirio et al., 2014). While we focused specifically on 
bobwhite, our modeling framework is likely to be applicable for 
modeling the environmental predictors of species distributions across a 
broad range of taxa.
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González-Romero, A., Grajales-Tam, K.M., Burke, A.M., Gronemeyer, P., 
Browning, D.M., 2014. The landscape of fear: the missing link to understand top- 
down and bottom-up controls of prey abundance? Ecology 95, 1141–1152. https:// 
doi.org/10.1890/13-1083.1.

Levine, J.M., Rees, M., 2002. Coexistence and relative abundance in annual plant 
assemblages: the roles of competition and colonization. Am. Nat. 160, 452–467.

Lohr, M., Collins, B.M., Williams, C.K., Castelli, P.M., 2011. Life on the edge: northern 
bobwhite ecology at the northern periphery of their range. J. Wildl. Manag. 75, 
52–60. https://doi.org/10.1002/jwmg.25.

Lusk, J.J., Guthery, F.S., Demaso, S.J., Lusk, J.J., 2001. Northern bobwhite (Colinus 
virginianus) abundance in relation to yearly weather and long-term climate patterns. 
Ecol. Modell.

MacArthur, R.H., 1972. Geographical Ecology. Harper & Row, New York. 
Maxwell, S.L., Butt, N., Maron, M., McAlpine, C.A., Chapman, S., Ullmann, A., Segan, D. 

B., Watson, J.E.M., 2019. Conservation implications of ecological responses to 
extreme weather and climate events. Divers. Distrib. https://doi.org/10.1111/ 
ddi.12878.

McGrath, D.J., Terhune, T.M., Martin, J.A., 2017. Northern bobwhite habitat use in a 
food subsidized pyric landscape. J. Wildl. Manag. 81, 919–927. https://doi.org/ 
10.1002/jwmg.21254.

Miller, D.A.W., Pacifici, K., Sanderlin, J.S., Reich, B.J., 2019. The recent past and 
promising future for data integration methods to estimate species’ distributions. 
Methods Ecol. Evol. 10, 22–37. https://doi.org/10.1111/2041-210X.13110.

Nolan, V., Yeiser, J.M., Costanzo, B., Martin, M.R., Mcguire, J.L., Delancey, C.D., 
Lewis, W.B., Martin, J.A., 2024. Effects of management practices on Northern 
Bobwhite Colinus virginianus density in privately owned working forests across the 
Southeastern United States. Ecol. Solut. Evid., e12352 https://doi.org/10.1002/ 
2688-8319.12352, 1–13. 

Northern Bobwhite, Grasslands and Savannas Framework: a framework for conservation 
action, Working Lands for Wildlife, 2022. National Resources Conservation Service 
(NRCS), Washington, DC, USA. 

Olimb, S.K., Dixon, A.P., Dolfi, E., Engstrom, R., Anderson, K., 2018. Prairie or planted? 
Using time-series NDVI to determine grassland characteristics in Montana. 
GeoJournal 83, 819–834. https://doi.org/10.1007/s10708-017-9805-8.
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