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Abstract

The rise in spring temperatures over the past half-century has led to advances in the phenology of many nontropical

plants and animals. As species and populations differ in their phenological responses to temperature, an increase in

temperatures has the potential to alter timing-dependent species interactions. One species-interaction that may be

affected is the competition for light in deciduous forests, where early vernal species have a narrow window of oppor-

tunity for growth before late spring species cast shade. Here we consider the Marsham phenology time series of first

leafing dates of thirteen tree species and flowering dates of one ground flora species, which spans two centuries. The

exceptional length of this time series permits a rare comparison of the statistical support for parameter-rich regression

and mechanistic thermal sensitivity phenology models. While mechanistic models perform best in the majority of

cases, both they and the regression models provide remarkably consistent insights into the relative sensitivity of each

species to forcing and chilling effects. All species are sensitive to spring forcing, but we also find that vernal and

northern European species are responsive to cold temperatures in the previous autumn. Whether this sensitivity

reflects a chilling requirement or a delaying of dormancy remains to be tested. We then apply the models to projected

future temperature data under a fossil fuel intensive emissions scenario and predict that while some species will

advance substantially others will advance by less and may even be delayed due to a rise in autumn and winter tem-

peratures. Considering the projected responses of all fourteen species, we anticipate a change in the order of spring

events, which may lead to changes in competitive advantage for light with potential implications for the composition

of temperate forests.
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Introduction

Phenology, the timing of recurrent life-history events,

such as leafing, flowering, migration, and reproduction,

determines the abiotic conditions and species interac-

tions to which an individual is exposed. In temperate

regions the spring phenology of many species corre-

lates negatively with temperature (Roy & Sparks, 2000;

Fitter & Fitter, 2002) and has advanced as temperatures

have risen in recent decades (Parmesan, 2007). As spe-

cies vary in their phenological responses to tempera-

ture, a change in climate may cause a change in the

phenology of one species relative to others in the same

community and this may impact on the fitness of one

or both species (Visser & Both, 2005; Elzinga et al.,

2007). The effects of climate change on phenological

mismatches between consumers and their resources

(Durant et al., 2007; Thackeray et al., 2010) or plants

and their pollinators (Hegland et al., 2009) have

received substantial attention. In comparison, the

potential for climate-induced changes in phenology to

impact on interspecific competition has been relatively

overlooked.

Light is a limiting resource in forests over which

plants compete. The phenology of different plants in a

temperate deciduous forest follows a characteristic

chronology, beginning with vernal shade-intolerant

ground flora, and progressing through trees in the

understory to those in the canopy (Salisbury, 1921;

Rathcke & Lacey, 1985). Leafing phenology directly

influences the amount of light penetrating the canopy

(Anderson, 1964), which can be a limiting factor on the

rate of growth and reproduction in the ground flora

(Whigham, 2004). Shade-intolerant species that rely on

the high irradiance levels before canopy closure to
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flower and fruit may set seed less successfully in

advanced shade (Kudo et al., 2008). For woody under-

story species, early leafing prior to canopy develop-

ment provides opportunities for photosynthesis that

partially offset the reductions in photosynthesis once

shading has developed (Augspurger et al., 2005). As a

consequence, if climate change alters the relative phe-

nology of different forest plant species, this may shift

the fitness of one species relative to another and the

species composition of a forest (Kramer et al., 2000).

Accurate predictions of species’ phenology under

projected future climatic conditions rely on identifying

the relevant cue(s) and the response(s) they elicit. For

temperate regions, we know that tree leafing and plant

flowering of most species is sensitive to thermal forc-

ing, whereby elevated spring temperatures result in

faster development and earlier phenology (Fitter et al.,

1995; Polgar & Primack, 2011). Some plant species are

also sensitive to chilling, whereby lower temperatures

during the preceding autumn and winter are associated

with advanced phenology (Murray et al., 1989; Fitter

et al., 1995; Yu et al., 2010; Polgar & Primack, 2011). A

recent cross-species comparison of the effect of chilling

treatments on twigs revealed substantial variation

among species in the sensitivity of their phenology to

chilling, with canopy species requiring the longest chill-

ing periods to break dormancy (Laube et al., 2014). As a

consequence of interspecific variation in the thermal

sensitivity of phenology, a rise in temperatures may

lead to phenological advances in some species and

delays for others (Cook et al., 2012; Laube et al., 2014).

Statistical analysis of the relationship between ambi-

ent temperatures and phenological observations repre-

sents a major source of insight into cues and sensitivity

(e.g., Cook et al., 2012). Statistical models fall into two

broad classes: (i) regression based, wherein the effect of

daily or aggregated temperatures and phenology is

estimated and model parameters do not directly relate

to known biological processes; (ii) mechanistic, wherein

models are constructed to relate to biological processes

that have been inferred from experiments, such as the

accumulation of growing degree-days and chilling

requirements. Both types of model can become parame-

ter rich, so that long-time series are required for accu-

rate parameter estimation and informative model

comparisons. One of the most exceptional phenological

time series is the Marsham record; Robert Marsham

began monitoring plant and animal phenology in 1736

and reported his findings to the Royal Society in 1789

(Marsham, 1789). After his death in 1797 his descen-

dants continued recording these events until 1958

(Sparks & Carey, 1995), making this one of the longest

phenological time series worldwide. Observations are

of first events from around Stratton Strawless Hall in

Norfolk, UK (lat = 52.74, lon = 1.29) and in some cases

from elsewhere across southeastern England and

include the first leafing dates of thirteen tree species, as

well as flowering dates of plants and various animal

records (Margary, 1926; Sparks & Carey, 1995). Sparks

& Carey (1995) examined the thermal sensitivity of

these records via application of stepwise regression to

monthly temperature averages. In addition to identify-

ing a strong effect of spring forcing on all species, for

some species warm temperatures in the preceding

autumn were found to correlate with later phenology.

In this article, we revisit some of these data with a vari-

ety of powerful correlation- and mechanism-based sta-

tistical approaches that can be applied to daily

temperature data for the inference of thermal cues and

the phenological response they elicit (e.g., Chuine,

2000; Roberts, 2008).

In this study, we consider the first leafing and flower-

ing dates of fourteen forest species from the Marsham

record. We have two main aims: first, to identify species

sensitivities to both spring forcing and autumn/winter

chilling; second, to predict how the phenology of spe-

cies will shift relative to the phenology of other species

in the community under a projected climate change sce-

nario. A secondary focus of our work is a comparison

of the performance and insights obtained from regres-

sion-based and mechanistic statistical models that seek

to explain phenological thermal sensitivity.

Materials and methods

We focus on fourteen forest plant events from the Marsham

time series, which spans the period 1753–1947. Thirteen

events were tree first leafing, and one was of wood anemone

(Anemone nemorosa) first flowering (see Table 1). For further

details on this exceptional dataset we refer the reader to ear-

lier works (Margary, 1926; Sparks & Carey, 1995). We

excluded the 1938 sycamore (Acer pseudoplantnus) record that

Sparks and Carey identified as an extreme outlier and poten-

tially erroneous. We matched observations with daily temper-

atures from the Central England temperature (CET) record,

beginning in 1772 (Parker et al., 1992). While the Marsham

Estate falls outside the triangle of weather stations used to

obtain this record, for the period 1960–2009 the daily CET

show an excellent correspondence (Pearson’s correlation

across all days = 0.96, Pearson’s correlation per day = 0.67–
0.97, with the Marsham location 0.13 °C warmer on average)

with daily mean temperatures interpolated to the Marsham

location from > 500 UK weather stations (Perry et al., 2009).

Using CET data will inevitably introduce additional measure-

ment error, which is expected to reduce the explanatory

power of our models.

We applied both regression and mechanistic approaches to

model the effect of daily temperatures on the Marsham pheno-

logical record. The three regression methods that we consid-

ered were single and double sliding time-window regression
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and P-spline signal regression (PSR). Sliding time-window

regression (Husby et al., 2010; Phillimore et al., 2012) identifies

the period or periods of consecutive days for which the mean

temperature best predicts the phenological response. The

model is then a linear regression. For the single time-window

potential covariates were daily temperatures from 1 June of

the year preceding the event up to the ordinal day (i.e., days

from Jan 1st) of the last recorded event. We allowed the dura-

tion of the time window to vary from 2 to 120 days and identi-

fied the single most predictive time window on the basis of

R2. This meant that for each species we considered hundreds

of possible time-windows. For the double time-window analy-

sis we included the most predictive time-window from the

above analysis and average temperature during an earlier

time window (start date from June 1st of the previous year

and duration 10–120 days) in a multiple regression. We itera-

tively searched for the time window that yielded the highest

R2. Throughout we used the Akaike Information Criterion

(AIC) to compare model types (Rathcke & Lacey, 1985). In cal-

culating AIC for these models, we included start date and

duration of time windows as additional model parameters.

P-spline signal regression allows regression on all daily

temperature covariates under consideration (Marx & Eilers,

1999; Roberts, 2008), and we focused on the period from 1

June of the year preceding the event up to the Julian day of

the last recorded event. PSR copes with multicollinearity of

daily temperatures by smoothing regression coefficients over

the time sequence. This is achieved by penalizing differences

between coefficients for consecutive days. To cope with the

large number of covariates, PSR includes a data-reduction step

through transformation to a smooth B-spline basis and

requires estimation of the optimal smoothing parameter

through cross-validation. We used the mgcv package (Wood,

2001) in R (R Development Core Team, 2014), and set the

degree of differences and order of B-splines as advised in Rob-

erts, (2012). The degree of complexity of the fitted curve is

expressed by the effective degrees of freedom.

Mechanistic models for phenology can be traced back to the

18th Century (R�eaumur, 1735) and are based on the idea that

the rate of physiological development depends on the accu-

mulation of daily temperatures or thermal time. Here we have

chosen to use two models, UniForc (H€anninen, 1990; Chuine,

2000) and UniChill (Chuine, 2000). UniForc is the simpler of

the two. This predicts that the phenological event occurs once

sufficient forcing units, F*, have been accumulated. The forc-

ing function, Rf, is given by

Rf ðxtÞ ¼ 1

1þ ebf ðxt�cf Þ ;

where xt is the temperature on day t, and bf < 0 and cf > 0 are

parameters to be estimated. So the event is predicted to occur

on the first day tb such that
Xtb

t¼t1
Rf ðxtÞ� F�;

Table 1 Summary statistics and model comparisons using D AIC (difference in Akaike Information Criterion from best model).

Models within 2 units of the best are underlined

Species*

Number

of years

Mean day of

event [ordinal

date]

Standard

deviation

D AIC

Null UniForc

UniChill

1 Sept

UniChill

1 Nov

Time

window

Double

time

window PSR

hawthorn – Crataegus

monogyna

143 9 March [67.6] 19.1 119.4 23.7 0.0 25.4 32.5 17.9 15.9

wood anemone –
Anemone nemorosa

140 25 March [83.8] 13.0 100.3 11.4 2.1 0.1 9.4 6.2 0.0

sycamore – Acer

pseudoplantanus

134 1 April [91.0] 13.3 66.2 7.4 1.9 12.3 8.6 0.0 8.2

horse chestnut –
Aesculus hippocastanum

142 4 April [93.8] 10.4 94.7 6.6 0.0 6.5 7.4 0.3 12.7

elm – Ulmus (procera?) 118 5 April [95.3] 14.9 41.8 0.0 0.4 0.3 4.0 4.3 8.4

birch – Betula (pendula?) 140 6 April [95.6] 12.9 88.3 18.1 0.0 19.4 22.4 3.8 8.5

rowan – Sorbus acuparia 138 6 April [96.0] 11.4 153.2 25.0 0.0 15.1 42.3 17.4 17.3

hornbeam – Carpinus

betulus

137 7 April [97.5] 15.2 48.5 7.3 0.0 3.9 9.2 8.6 7.5

lime – Tilia spp. 140 13 April [102.7] 11.6 125.2 10.7 0.0 3.5 24.6 10.5 13.6

maple – Acer

(campestre?)

96 19 April [108.5] 13.4 38.6 13.8 7.1 14.3 11.4 0.0 7.8

sweet chestnut –
Castanea sativa

134 19 April [108.6] 11.3 111.1 1.1 0.0 5.1 19.4 12.6 16.1

beech – Fagus sylvatica 143 20 April [110.0] 7.8 92.5 0.0 1.0 4.5 10.9 12.0 15.8

oak – Quercus spp. 141 23 April [113.1] 10.7 197.9 19.4 2.6 0.0 58.8 42.5 31.8

ash – Fraxinus excelsior 129 29 April [118.7] 11.1 53.4 0.0 4.4 0.9 9.1 9.4 15.2

*Species identities follow Sparks & Carey (1995). Latin binomials in parentheses indicate records for which the species is uncertain.
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where t1 is the day when forcing starts, which is also to be esti-

mated, resulting in a total of four parameters.

The UniChill model extends the UniForc model by adding a

chilling requirement to the forcing criterion. It is a sequential

arrangement where forcing only starts once sufficient chilling

units, C*, have been accumulated. So t1 is set such that
Xt1

t¼t0
RcðxtÞ�C�;

where t0 is the date that the chilling process starts and the

chilling function, Rc, is given by the more flexible function

RcðxtÞ ¼ 1

1þ eacðxt�ccÞ2þbcðxt�ccÞ
;

with ac, bc, and cc are parameters to be estimated. As in (Chu-

ine, 2000), we fix t0 to either 1 September or 1 November in

the year preceding the event, rather than estimating it. As

such, the UniChill model has seven parameters to be esti-

mated.

We fitted the mechanistic models to the data using heuristic

optimization algorithms that sought to minimize the root

mean square error between the predicted and observed phe-

nology. This proved challenging due to the inherent discrete-

ness of the objective function, having multiple minima and a

degree of parameter redundancy. We attempted to improve

this by making the predicted response continuous through lin-

ear interpolation. We used two sets of algorithms to ensure

good solutions were found (a) simulated annealing with the

GenSA package (Xiang et al., 2013) in R, starting from 200 start

points and (b) particle swarm optimization (PSO) using the

hydroPSO package (Zambrano-Bigiarini & Rojas, 2013) in R.

Both required sensible setting of initial values and parameter

ranges (e.g., through use of UniForc estimates for estimating

the UniChill model).

To project future phenology, future temperature projections

were required. We followed the UK Climate Impacts Pro-

gramme (UKCP09) weather generator approach (Jones et al.,

2009), treating the Central England temperature in the period

1961–1990 as a temperature baseline. For the 25km grid square

that contains 52.74°N, 1.29°E, we obtained 1000 samples of the

posterior distribution of projected change in monthly tempera-

tures for 2010–2039 and 2040–2069 under a fossil fuel intensive

SRES scenario (A1F1) and allowing for random sampling of

model variants. We then added these projected changes to the

baseline temperatures to get 1000 thirty-year time series for

each time period, capturing both year-to-year variability and

uncertainty in the temperature projection.

To encompass parameter uncertainty in predictions based

on the mechanistic models, we put them into a Bayesian

framework, which enabled us to generate samples from the

joint posterior distribution of the parameters using Monte Car-

lo Markov chain (MCMC). For each species, we selected the

best fitting model. Again we chose to use a continuous form of

the predicted response through linear interpolation. The mod-

els were simplified to reduce mixing problems caused by

parameter redundancy. The parameter cf was fixed to the max-

imum likelihood estimate for both UniForc and UniChill mod-

els. For the UniChill model the parameter cc was also fixed,

and bc was constrained to be positive. We selected weakly

informative priors for parameters. Convergence and mixing

were assessed by Geweke’s (1992) and Heidelberger &

Welch’s (1983) convergence diagnostics for single chains along

with Gelman and Rubin’s convergence diagnostic (Gelman &

Rubin, 1992) on four parallel chains. For the UniForc model,

burn-in periods of 10 000 iterations were followed by a mini-

mum of 50 000 iterations thinned to a sample of 1000. For the

UniChill model, the burn-in period employed was 50 000 iter-

ations, which followed by a minimum of 200 000 iterations

and then thinned to a sample of 1000. Where indicated by con-

vergence diagnostics, we ran the chains longer. We used JAGS

MCMC software package (Plummer, 2003), along with the

Coda packages in R.

We then applied each sample of the phenology model

parameter posterior distribution to a different sample of the

projected time series, giving us 1000 samples of a 29-year pro-

jected phenology time series. We used this distribution to

compare the relative phenology of different species pairs.

As a test of our predictions, we assessed the impact of

recent temperature changes on the relative timings of first leaf-

ing of two tree species during the period 1999–2011. We based

this analysis on 704 silver birch and 558 pedunculate oak

records that citizen scientists have contributed to the UK Phe-

nology Network (www.naturescalendar.co.uk) from locations

within 1° latitude and 1° longitude of Stratton Strawless Hall

(52.74°N, 1.29°E). Note that we do not know the species iden-

tity of the oak and birch recorded by the Marsham family

(Sparks & Carey, 1995). We assessed the average annual dif-

ference in phenology in a mixed effects model (Bates et al.,

2012), treating phenology as a response, year as a random

effect and species as a fixed effect.

Except where stated otherwise, statistical analyses were

conducted using R (R Development Core Team, 2014).

Results

Thermal cues

Time-window and PSR models explain 29–73% of the

interannual variation in phenology (Table S1a-c) and

identify highly congruent temperature-forcing periods

that start a month or more before the first event and

overlap with the distribution of events (Fig. 1). Sensitiv-

ity to forcing during the best time-window ranges from

�5.06 days °C�1 in beech to �9.33 days °C�1 in haw-

thorn (Table S1a).

The single time-window is outperformed by the dou-

ble time-window and/or PSR model for all species

other than elm, beech, and ash (Table 1). In most cases

double time-window and PSR models identify coinci-

dent periods of chilling sensitivity in the latter part of

the preceding year (Fig. 1). This suggests that warmer

conditions in the autumn–winter period have a delay-

ing effect on phenology (Fig. 1). The importance of

chilling varies between species, being most extreme for

hawthorn and birch, with chilling slope estimates of
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7.36 and 5.39 days °C�1, respectively (Table S1a). Oak

behaves differently in the double time-window analysis

in that the first window is identified as playing a forc-

ing rather than chilling role (Fig. 1m, Table S1b).

Mechanistic models, based on growing degree-days,

outperform the regression models for most species, the

exceptions being wood anemone, sycamore, horse

chestnut, and maple (Fig. 2, Table 1). However, the

insights from double time-window and PSR models

broadly agree with those gained from mechanistic

models, demonstrating the utility of such straightfor-

ward correlative approaches for identifying thermal

cues.

The forcing-only model (UniForc) outperforms the

chilling and forcing (UniChill) model for first leafing of

elm, beech, and ash. Where the UniChill model per-

forms best, September 1st is the preferred UniChill start

date for all species except oak, where November 1st is

preferred. For most species the chilling function means

that only days where temperatures are below a thresh-

old varying from 10 to 17 °C contribute to chilling (Fig.

S1, Table S1b). However, in the case of horse chestnut

and oak the chilling function unexpectedly exhibits a

trough shape and for wood anemone there is a positive

relationship between temperature and the correspond-

ing chilling units (Fig. S1). We find no tendency for

later spring species to have larger chilling require-

ments, as captured by C* (Fig. S1, Table S1e & f). Where

one of the UniChill models is preferred, we find that

the mean date of the chilling requirement being met is

broadly coincident with the start date for forcing under

the UniForc model, but that the standard deviation of

this date among years can be substantial, for example,

for birch = 6.36 days (Table S1 d-f). With the exception

of beech and ash, forcing functions are sigmoid over

the relevant temperature range. Species with early phe-

nology accumulate more forcing units at lower temper-

atures than species with later phenology (Fig. S1).

There was evidence for a degree of first-order tempo-

ral autocorrelation in the model residuals for some spe-

cies, in particular hornbeam. This may arise from a

carryover between one year and the next, but could

equally be due to autocorrelation in recorder behavior

or weather. Consequently, we will have slightly under-

estimated parameter uncertainty.

A striking finding to emerge from this study is the

early timing of the chilling period for those species

where such an effect was supported (Fig. 1). In the PSR

model significantly positive coefficients extend back to

about 122 days into the previous year (September 1st),
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Fig. 1 Predicted coefficients (black line) from P-spline signal regression model (see Materials and Methods) for the effect of daily tem-

peratures during the preceding and current year on phenology of the fourteen species (a-n). Ordinal dates start on Jan 1st in the year of

the event and ordinal dates with a value <1 refer to the previous year. The light blue region indicates 95% approximate confidence

intervals on individual coefficients. Histograms present the temporal distribution of observations for each event in the Marsham record.

The red (forcing) and blue (chilling) horizontal bar identify the time period(s) identified using the sliding-window approach, with the

bar position on the y axis = average coefficient over the time window.
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in agreement with a general preference for September

1st as the UniChill model start date. For oak, high tem-

peratures as far back as the preceding summer months

appear to delay spring phenology (Fig. 1), as Sparks &

Carey (1995) noted.

Phenology prediction

When we predict future phenology on the basis of pro-

jected temperatures under a fossil fuel intensive SRES

scenario (A1F1) for 2010–2039 and 2040–2069 we find

that the median first dates of all species are shifted rela-

tive to historic values (Fig. 3). Several species with late

spring phenology, sweet chestnut, oak, beech, and ash,

are predicted to advance their phenology considerably.

For instance, by 2010–2039 the predicted median oak

first leafing date is 14.3 days earlier than the historic

records and by 2040–2069 it is another 10.3 days earlier.

In comparison, several of the species with early spring

phenology, especially those that are highly sensitive to

chilling, such as hawthorn and birch, are predicted to

be delayed or advance less. In addition, we find that for

both projected periods the chilling requirements of

some species will not be met in years with especially

warm conditions (Fig. 3b,c), mirroring the findings of a

similar projection of North American tree phenology

(Morin et al., 2009).

At the community level, the species’ responses are

predicted to result in increased synchrony of spring

phenological events by 2010–2039, and a re-arrange-

ment of the timing of events by 2040–2069 (Fig. 3). This

chronological shuffling is most apparent if we consider

phenology and predictions for species in a pairwise

fashion (Table S2). If we take birch and oak as an exam-

ple: in the Marsham dataset birch came into leaf before

oak in >90% of years, by 2010–2039 this is predicted to

decrease to 38% of years and by 2040–2069 oak leafing

is predicted to precede birch leafing in 92% of years.

We can also compare the Marsham record with first

leafing records for silver birch and pedunculate oak col-

lected by citizen scientists in the same region for the

period 1999–2011. While silver birch preceded oak each

year during the recent period (Fig. 4), the average

annual difference in mean first leafing dates was 11.41

days (� 0.46) down from 18.23 (� 1.03) in the historic

time series. In broad support of our predictions the two

years preceded by the warmest autumn/winter, 2000

and 2007 had the smallest difference in leafing times,

with silver birch coming into leaf just two days earlier

than pedunculate oak in 2000.

Discussion

In agreement with earlier work on the Marsham dataset

(Sparks & Carey, 1995), we find that spring forcing

plays a strong role in determining the phenology of all

species, and a subset of these species are also sensitive

to cold temperatures during the preceding year. A posi-

tive slope for the regression of phenology on autumn

temperatures has been reported by several correlative

analyses of plant time series (Fitter et al., 1995; Cook

et al., 2012). It is certainly possible that the slopes iden-

tified by ourselves and others reflect chilling require-

ments, as the UniChill model assumes (Chuine, 2000),

and there is ample experimental evidence that a period

of winter chilling brings budburst of high-latitude

deciduous trees forward (Laube et al., 2014).

The early timing of the period of chilling sensitivity

may, however, be consistent with an alternative mecha-

nism of thermal sensitivity, where warm autumn

conditions delay the opportunity for bud dormancy

induction, which has been shown experimentally in

1.
 h

aw
th

or
n

2.
 w

oo
d 

an
em

on
e

3.
 s

yc
am

or
e

4.
 h

or
se

 c
he

st
nu

t

5.
 e

lm

6.
 b

irc
h

7.
 ro

w
an

8.
 h

or
nb

ea
m

9.
 li

m
e

10
. m

ap
le

11
. s

w
ee

t c
he

st
nu

t

12
. b

ee
ch

13
. o

ak

14
. a

sh

Ak
ai

ke
 W

ei
gh

ts

0.0

0.2

0.4

0.6

0.8

1.0

MODELS

Null

REGRESSION
Time window
Double TW
PSR

MECHANISTIC
Forcing GDD
Unichill - Sep
Unichill - Nov

Fig. 2 Akaike weights comparing all models for each species.

© 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd., 21, 2603–2611

2608 A. M. I . ROBERTS et al.



boreal trees (Heide, 2003). Delayed dormancy could in

turn delay the period of chilling unit accumulation. If

this were true, the UniChill model chilling function

(Chuine, 2000) may be detecting a signature of dor-

mancy induction, meaning that future modeling would

benefit from further parameters to capture this addi-

tional process. Fitting such a model will be challenging

and might require other parameters to be fixed based

on experimental insights. A signature of dormancy

induction would also resolve an apparent disagreement

between our results and the experimental finding of La-

ube et al. (2014). They report that the low chilling

requirements of pioneer tree species, such as birch,

mean that they are relatively less impacted by warm

winters than canopy tree species, such as beech, but as

their experiments took place after dormancy induction

they may have missed a signature that we detect.

As a consequence of interspecific variation in sensi-

tivities to forcing and chilling we predict a substantial

re-ordering of forest phenology under future climate,

the ecological consequences of which are not currently

known. It seems likely, however, that earlier shading

by canopy trees will impact negatively on the growth

of trees in the understorey and recruitment of their

seedlings (Laube et al., 2014). Tree-rings represent a

source of information on the impacts of past conditions

on growth (�Cufar et al., 2008); therefore, it might be

possible to model the phenology of multiple coexisting

species into the past on the basis of historic temperature

data and to use these predictions to test the impact of

relative phenology upon growth (although controlling

for confounding environmental influences would

necessitate a long-time series and detailed knowledge

of woodland management). If warmer winters cause

the early year growth of species with historically late

phenology (e.g., oak) to impact negatively on the early

year growth of species with historically early phenol-

ogy (e.g., birch), then this may lead to strong selection

for earlier leafing in the latter. At the same time those

species projected to advance the most may face greater

damage from late frosts (Polgar & Primack, 2011). The

net effect that these factors will have on forest commu-
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ordinal day 250. Median (excluding cases where no event was
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nities is unknown, although we suggest that shifts in

the abundance of species and community composition

will be a more likely long-term outcome than genetic

adaptation of species (De Mazancourt et al., 2008). In

recent years mechanistic models that link phenological

responses to species distributions have been developed

(Chuine & Beaubien, 2001; Morin et al., 2007), and a

next step would be to develop models to test whether

the relative phenology of interacting species leaves a

detectable imprint on species distributions.

On a methodological note, the temporal replication

and free availability of the Marsham series (Margary,

1926; Sparks & Carey, 1995) make it well suited as a

benchmark dataset for phenology. We have reported

several statistics that pertain to model explanatory

power (R2, root mean square error, and AIC) and

against which the performance of novel parameter-rich

models might usefully be compared.

Taken together, we find that the spring phenology of

each of the focal forest species is highly sensitive to

spring temperatures, but that species vary substantially

in their sensitivity to winter and spring temperatures.

Our projections reveal that this may lead to a substan-

tial shuffling of the order of flowering and leafing

events in temperate forests. Identifying the fitness and

ecological consequences of such shifts in the relative

phenology of interacting species should be a priority

for future work addressing climate impacts.
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Figure S1 Maximum likelihood chilling and forcing func-
tions in relation to temperature under the preferred mecha-
nistic model for each species. Note that the models for three
species have no chilling requirement.
Table S1 Coefficients of determination, R2, for models fitted,
with summary of parameters estimated for (a) regression
models and (b) mechanistic models.
Table S2 The relative proportion of years when the phenol-
ogy of species A (rows) precedes the phenology of species B
(columns) in (a) the historic data, and predicted data for (b)
2010–2039 and (c) 2040–2069.
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