Return to Wildland Fire
Return to Northern Bobwhite site
Return to Working Lands for Wildlife site
Return to Working Lands for Wildlife site
Return to SE Firemap
Return to the Landscape Partnership Literature Gateway Website
return
return to main site

Skip to content. | Skip to navigation

Sections

Personal tools

You are here: Home
118 items matching your search terms.
Filter the results.
Item type

























New items since



Sort by relevance · date (newest first) · alphabetically
File PDF document A drought-induced pervasive increase in tree mortality across Canada’s boreal forests
Drought-induced tree mortality is expected to increase worldwide under projected future climate changes (1–4). The Canadian boreal forests, which occupy about 30% of the boreal forests worldwide and 77% of Canada’s total forested land, play a critical role in the albedo of Earth’s surface (5) and in its global carbon budget (6). Many of the previously reported regional-scale impacts of drought on tree mortality have affected low- and middle-latitude tropical regions (2) and the temperate forests of the western United States (3), but no study has examined high-latitude boreal regions with multiple species at a regional scale using long-term forest permanent sampling plots (7–9). Here, we estimated tree mortality in natural stands throughout Canada’s boreal forests using data from the permanent sampling plots and statistical models. We found that tree mortality rates increased by an overall average of 4.7%yr−1 from 1963 to 2008, with higher mortality rate increases in western regions than in eastern regions (about 4.9 and 1.9% yr−1 ,respectively).The water stress created by regional drought may be the dominant contributor to these widespread increases in tree mortality rates across tree species, sizes, elevations, longitudes and latitudes. Western Canada seems to have been more sensitive to drought than eastern Canada.
Located in Resources / Climate Science Documents
File PDF document Continuous flux of dissolved black carbon from a vanished tropical forest biome
Humans have used fire extensively as a tool to shape Earth’s vegetation. The slash-and-burn destruction of Brazil’s Atlantic forest, which once covered over 1.3 million km2 of present-day Brazil and was one of the largest tropical forest biomes on Earth1, is a prime example. Here, we estimate the amount of black carbon generated by the burning of the Atlantic forest, using historical records of land cover, satellite data and black carbon conversion ratios. We estimate that before 1973, destruction of the Atlantic forest generated 200–500 million tons of black carbon. We then estimate the amount of black carbon exported from this relict forest between 1997 and 2008, using measurements of polycyclic aromatic black carbon collected from a large river draining the region, and a continuous record of river discharge. We show that dissolved black carbon (DBC) continues to be mobilized from the watershed each year in the rainy season, despite the fact that widespread forest burning ceased in 1973. We estimate that the river exports 2,700 tons of DBC to the ocean each year. Scaling our findings up, we estimate that 50,000–70,000 tons of DBC are exported from the former forest each year. We suggest that an increase in black carbon production on land could increase the size of the refractory pool of dissolved organic carbon in the deep ocean.
Located in Resources / Climate Science Documents
File PDF document Brownness of organics in aerosols from biomass burning linked to their black carbon content
Atmospheric particulate matter plays an important role in the Earth’s radiative balance. Over the past two decades, it has been established that a portion of particulate matter, black carbon, absorbs significant amounts of light and exerts a warming effect rivalling that of anthropogenic carbon dioxide1,2. Most climate models treat black carbon as the sole light-absorbing carbonaceous particulate. However, some organic aerosols, dubbed brown carbon and mainly associated with biomass burning emissions3–6 , also absorbs light7 . Unlike black carbon, whose light absorption properties are well understood8, brown carbon comprises a wide range of poorly characterized compounds that exhibit highly variable absorptivities, with reported values spanning two orders of magnitude3–6,9,10. Here we present smog chamber experiments to characterize the effective absorptivity of organic aerosol from biomass burning under a range of conditions. We show that brown carbon in emissions from biomass burning is associated mostly with organic compounds of extremely low volatility11. In addition, we find that the effective absorptivity of organic aerosol in biomass burning emissions can be parameterized as a function of the ratio of black carbon to organic aerosol, indicating that aerosol absorptivity depends largely on burn conditions, not fuel type. We conclude that brown carbon from biomass burning can be an important factor in aerosol radiative forcing.
Located in Resources / Climate Science Documents
File PDF document Elevation-dependent influence of snow accumulation on forest greening
Rising temperatures and declining water availability have influenced the ecological function of mountain forests over the past half-century. For instance, warming in spring and summer and shifts towards earlier snowmelt are associated with an increase in wildfire activity and tree mortality in mountain forests in the western United States (1,2). Temperature increases are expected to continue during the twenty-first century in mountain ecosystems across the globe (3,4), with uncertain consequences. Here, we examine the influence of interannual variations in snowpack accumulation on forest greenness in the Sierra Nevada Mountains, California, between 1982 and 2006. Using observational records of snow accumulation and satellite data on vegetation greenness we show that vegetation greenness increases with snow accumulation. Indeed, we show that variations in maximum snow accumulation explain over 50% of the interannual variability in peak forest greenness across the Sierra Nevada region. The extent to which snow accumulation can explain variations in greenness varies with elevation, reaching a maximum in the water-limited mid- elevations, between 2,000 and 2,600 m. In situ measurements of carbon uptake and snow accumulation along an elevational transect in the region confirm the elevation dependence of this relationship. We suggest that mid-elevation mountain forest ecosystems could prove particularly sensitive to future increases in temperature and concurrent changes in snow accumulation and melt.
Located in Resources / Climate Science Documents
File PDF document Combined climate and carbon-cycle effects of large-scale deforestation
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth’s climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeo- chemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth’s climate, because the warming carbon-cycle effects of de- forestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons un-related to climate.
Located in Resources / Climate Science Documents
File PDF document Assessing the impacts of livestock production on biodiversity in rangeland ecosystems
Biodiversity in rangelands is decreasing, due to intense utilization for livestock production and conversion of rangeland into cropland; yet the outlook of rangeland biodiversity has not been considered in view of future global demand for food. Here we assess the impact of future livestock production on the global rangelands area and their biodiversity. First we formalized exist- ing knowledge about livestock grazing impacts on biodiversity, expressed in mean species abundance (MSA) of the original rangeland native species assemblages, through metaanalysis of peer-reviewed literature. MSA values, ranging from 1 in natural rangelands to 0.3 in man-made grasslands, were entered in the IMAGE-GLOBIO model. This model was used to assess the impact of change in food demand and livestock production on future rangeland biodiversity. The model revealed remarkable regional variation in impact on rangeland area and MSA between two agricultural production scenarios. The area of used rangelands slightly increases globally between 2000 and 2050 in the baseline scenario and reduces under a scenario of enhanced uptake of resource-efficient production technologies increasing production [high levels of agricultural knowledge, science, and technology (high-AKST)], particularly in Africa. Both scenarios suggest a global decrease in MSA for rangelands until 2050. The contribution of livestock grazing to MSA loss is, however, expected to diminish after 2030, in particular in Africa under the high-AKST scenario. Policies fostering agricultural intensification can reduce the overall pressure on rangeland biodiversity, but additional measures, addressing factors such as climate change and infrastructural development, are necessary to totally halt biodiversity loss. dose-response model | intactness | land use
Located in Resources / Climate Science Documents
File PDF document Adapting to flood risk under climate change
Flooding is the most common natural hazard and third most damaging globally after storms and earthquakes. Anthropogenic climate change is expected to increase flood risk through more frequent heavy precipitation, increased catchment wetness and sea level rise. This paper reviews steps being taken by actors at international, national, regional and community levels to adapt to flood risk from tidal, fluvial, surface and groundwater sources. We refer to existing inventories, national and sectoral adaptation plans, flood inqui- ries, building and planning codes, city plans, research literature and international policy reviews. We dis- tinguish between the enabling environment for adaptation and specific implementing measures to manage flood risk. Enabling includes routine monitoring, flood forecasting, data exchange, institutional reform, bridging organizations, contingency planning for disasters, insurance and legal incentives to reduce vulner- ability. All such activities are ‘low regret’ in that they yield benefits regardless of the climate scenario but are not cost-free. Implementing includes climate safety factors for new build, upgrading resistance and resilience of existing infrastructure, modifying operating rules, development control, flood forecasting, temporary and permanent retreat from hazardous areas, periodic review and adaptive management. We identify evidence of both types of adaptation following the catastrophic 2010/11 flooding in Victoria, Australia. However, signif- icant challenges remain for managing transboundary flood risk (at all scales), protecting existing property at risk from flooding, and ensuring equitable outcomes in terms of risk reduction for all. Adaptive management also raises questions about the wider preparedness of society to systematically monitor and respond to evol- ving flood risks and vulnerabilities. Keywords adaptation, climate change, flood, natural hazards, risk, Victoria, vulnerability
Located in Resources / Climate Science Documents
File PDF document Effects of Urbanization and Climate Change on Stream Health
Estimation of stream health involves the analysis of changes in aquatic species, riparian vegetation, microinvertebrates, and channel degradation due to hydrologic changes occurring from anthropogenic activities. In this study, we quantified stream health changes arising from urbanization and climate change using a combination of the widely accepted Indicators of Hydrologic Alteration (IHA) and Dundee Hydrologic Regime Assessment Method (DHRAM) on a rapidly urbanized watershed in the Dallas-Fort Worth metropolitan area in Texas. Historical flow data were split into pre-alteration and post-alteration periods. The influence of climate change on stream health was analyzed by dividing the precipitation data into three groups of dry, average, and wet conditions based on recorded annual precipitation. Hydrologic indicators were evaluated for all three of the climate scenarios to estimate the stream health changes brought about by climate change. The effect of urbanization on stream health was analyzed for a specific subwatershed where urbanization occurred dramatically but no stream flow data were available using the widely used watershed-scale Soil and Water Assessment Tool (SWAT) model. The results of this study identify negative impacts to stream health with increasing urbanization and indicate that dry weather has more impact on stream health than wet weather. The IHA-DHRAM approach and SWAT model prove to be useful tools to estimate stream health at the watershed scale.
Located in Resources / Climate Science Documents
File PDF document Can a collapse of global civilization be avoided?
Environmental problems have contributed to numerous collapses of civilizations in the past. ... But today, for the first time, humanity’s global civilization—the worldwide,increasingly interconnected, highly technological society in which we all are to one degree or another, embedded—is threatened with collapse by an array of environmental problems. Humankind finds itself engaged in what Prince Charles described as ‘an act of suicide on a grand scale’ [4], facing what the UK’s Chief Scientific Advisor John Beddington called a ‘perfect storm’ of environmental problems [5]. The most serious of these problems show signsof rapidly escalating severity, especially climate disruption.
Located in Resources / Climate Science Documents
File PDF document Ecosystem Disturbance, Carbon, and Climate
Models of climate change effects should incorporate land-use changes and episodic disturbances such as fires and insect epidemics.
Located in Resources / Climate Science Documents